Course Enquiry Form
Course Reviews
- BAJA / ATV Virtuals Preparation
Outstanding! 5
I spent at least 2 hours daily working on the course and this course week took me a month to complete. The problem sets are designed in such a way that one is forced to read and do further research to accomplish them.Prateek Jain
BAJA / ATV Virtuals PreparationWell Arranged Course 5
Helped a lot :-)Adithya C Vinod
Fundamentals of Automobile EngineeringEnlightening 5
It was a very interesting and enlightening course. The instructor was excellent.Arvind Devaraj
Fundamentals of Automobile EngineeringGreat Learning 4
This course will make you learn everything you need to know about automobile, nothing more and nothing less. Highly recommended.UDAY KANTH
Electric Vehicle Certification Course (Fundamental) + Project-based 1-month InternshipGreat Learning 5
This course will make you learn everything you need to know about Electric mobility, nothing more and nothing less. Highly recommended.UDAY KANTH
Why Choose DIY Course?
Courses designed for you
BMS – Battery Management System Certification Course (including Project-based 1-month Internship program)by Aayush Chimurkar
Design of EV Using MATLAB (including Project-based 1-month Internship program)by DIYguru Moderator
DIYguru Classroom Sessionsby DIYguru Moderator
DIYguru Webinar Sessionsby DIYguru Moderator
Electric Vehicle Certification Course (Fundamental) + Project-based 1-month Internshipby Aayush Chimurkar
Electric Vehicle Powertrain Engineering (Advanced) (including Project-based 1-month Internship program)by DIYguru Moderator
Three Week Internship / Training Program on Electric Vehicle Design & Developmentby DIYguru Moderator
Check your Certificate Code
FUNDAMENTAL CERTIFICATION
- Fundamentals of Electric Vehicle Engineering
- MATLAB Fundamentals
- Fundamentals of Automobile Engineering
- Basics of Python Programming Language for Mechanical & Electrical Engineering
- Fundamentals of Vehicle Dynamics
- Electrical Engineering Fundamentals
- Autodesk Alias Certification Course
- Additive Manufacturing & Rapid prototyping
INTERMEDIATE CERTIFICATION
- Design of EV using MATLAB
- Electric Motorcycle / E-Bike Design Course using SOLIDWORKS
- CATIA – Computer Aided Drawing and Drafting
- Automotive Sketching & Drawing
- Battery Management System
- BS 6 Emission Norms and Control Stategies
- Fundamentals of ANSYS (FEA/FEM)
- MSC ADAMS Multibody Dynamics
ADVANCED CERTIFICATION
On electric vehicles (EVs), which includes both fuel cell electric vehicles (FCVs) and battery electric vehicles (BEVs), and hybrid electric vehicles (HEVs) the converter, inverter, and controller are integrated into one unit, but each performs different tasks. These electronics generate a lot of heat and have their own dedicated cooling system separate from the engine which includes its own pump and radiator.
Converters
A device that increases or decreases the voltage (AC or DC) of a power source depending on the application. A converter that increases voltage is called a step-up converter and a converter that decreases voltage is called a step-down converter. In EVs/HEVs step-up and step-down converters are combined into one unit. An application of a step-up converter is converting EV/HEV battery voltage (typically 180-300 volts) to about 650 volts to power the traction motor. An advantage of using a converter to increase the voltage from the battery is a smaller and less expensive battery may be used while still utilizing an efficient high voltage motor. An application of a step-down inverter would be decreasing the high voltage direct current (DC 180-300 volts) from the HEV/EV battery to low voltage (12-14 volts) DC that can be used to charge the 12-volt auxiliary battery and operate light load devices such as lighting, radio, and windows.
Inverters
Converts direct current (DC) from the battery to alternating current (AC) to be used by other devices such as the traction motor and coolant pump.
Controls
Control systems are a vital part of all automobiles and are more complex in electrified vehicles where additional components must be monitored and controlled appropriately. Additional components of electrified vehicles include high voltage batteries, motors, inverters, converters, pumps, regenerative brakes, and additional accessories. These components must be controlled for correct and efficient operation. The controls of these components are performed through dedicated modules which communicate with each other to determine the correct control procedure for components. An example of fuel control on a non-electric vehicle is when the driver’s foot presses on the accelerator. When this occurs the engine computer, known as the powertrain control module (PCM), receives input from sensors and increases the amount of fuel injected. However, in electrified vehicles, this becomes more complicated. For example, in a hybrid vehicle when the driver’s foot presses on the accelerator, various conditions such as battery charge and the amount of pedal depression determine what is controlled to move the vehicle down the road. If the battery is sufficiently charged, the PCM may signal the motor and related components directly or through specific controllers to drive the vehicle on pure electric power or in combination with the engine. If the battery has a low charge, the PCM may use the engine to move down the road while communicating to the motor to go into power generation mode to charge the battery. This example is just a small fraction of the number of controls used in vehicles. For additional information and insight on vehicle controls visit our Resource Library. View how different types of hybrid drivetrain configurations power the vehicle down the road in series, parallel, and series-parallel hybrid configurations on this Hybrid Types page and Simulations page. (External Links)